

G O - F A S T E R C O N S U L T A N C Y L T D . - C O N F I D E N T I A L P E O P L E S O F T R U N C O N T R O L P U R G E U T I L I T Y 1

T E C H N I C A L N O T E

PEOPLESOFT RUN CONTROL

PURGE UTILITY

Prepared By David Kurtz, Go-Faster Consultancy Ltd.

Technical Note

Version 1.0

Thursday 26 August 2010

(E-mail: david.kurtz@go-faster.co.uk, telephone +44-7771-760660)

File: Run Control Purge.doc, 26 August 2010

Contents

Introduction.. 2

How does it work? ... 3

Implementation Considerations ... 6

T E C H N I C A L N O T E - R U N C O N T R O L P U R G E . D O C 2 6 A U G U S T 2 0 1 0

P E O P L E S O F T R U N C O N T R O L P U R G E U T I L I T Y 2 G O - F A S T E R C O N S U L T A N C Y L T D . - C O N F I D E N T I A L

Introduction

Run Control records are used to pass parameters into processes scheduled processes. These

tables tend to grow, and are rarely purged. When operator accounts are deleted, the Run

Controls remain, but are no longer accessible to anyone else.

I have worked on systems where new Run Controls, whose IDs contain either a date or

sequence number, are generated for each process. The result is that the Run Control tables,

especially child tables, grow quickly and if not regularly managed will become very large. On

one system, I found 18 million rows on one table!

RECNAME FIELDNAME NUM_ROWS BLOCKS

--------------- ------------------ ---------- ----------

TL_RUN_CTRL_GRP RUN_CNTL_ID 18424536 126377

AEREQUESTPARM RUN_CNTL_ID 1742676 19280

AEREQUESTTBL RUN_CNTL_ID 333579 3271

XPQRYRUNPARM RUN_CNTL_ID 121337 1630

TL_TA_RUNCTL RUN_CNTL_ID 112920 622

…

I have written a simple Application Engine process, GFC_RC_ARCH, that purges old Run

Controls from these tables.

Run Control records are easily identified. They are characterised by:

• the first column of these tables is always OPRID, and the second is either

RUNCNTLID or RUN_CNTL_ID,

• these two columns are also the first two columns of the unique key,

• the Run Control tables appear on pages of components that are declared as the

process security component for that process.

I have decided that if the combination of OPRID and RUN_CNTL_ID does not appear in the

process scheduler request table, PSPRCSRQST, then the Run Control record should be

deleted. Thus, as the delivered Process Scheduler Purge process, PRCSPURGE, deletes rows

from the Process Scheduler tables, so my purge process will delete rows from the Run Control

tables.

2 6 A U G U S T 2 0 1 0 T E C H N I C A L N O T E - R U N C O N T R O L P U R G E . D O C

G O - F A S T E R C O N S U L T A N C Y L T D . - C O N F I D E N T I A L P E O P L E S O F T R U N C O N T R O L P U R G E U T I L I T Y 3

I have chosen to make these two Application Engine processes mutually exclusive, so the

Process Scheduler will not run both at the same time, but that configuration cannot be

delivered in an Application Designer project.

How does it work?

This query identifies the run control records that need to be purged.

%Select(RECNAME, FIELDNAME, TABLE_NAME, NUMROWS)

 SELECT DISTINCT r.recname

 , f2.fieldname

 , t.table_name

 , t.num_rows

 FROM psrecdefn r

 , psrecfielddb f1

 , psrecfielddb f2

 , pspnlfield f

 , pspnlgroup g

 , ps_prcsdefnpnl p

 , user_tables t

 WHERE r.rectype = 01

 AND f1.recname = r.recname

 AND f1.fieldnum = 1

 AND f1.fieldname = 'OPRID'2

 AND MOD(f1.useedit,2) = 13

 AND f2.recname = r.recname

 AND f2.fieldnum = 2

1 The record to be purged should be a table

2 The first field should be OPRID

3 The first field should be a part of the unique key

T E C H N I C A L N O T E - R U N C O N T R O L P U R G E . D O C 2 6 A U G U S T 2 0 1 0

P E O P L E S O F T R U N C O N T R O L P U R G E U T I L I T Y 4 G O - F A S T E R C O N S U L T A N C Y L T D . - C O N F I D E N T I A L

 AND f2.fieldname IN('RUNCNTLID','RUN_CNTL_ID')4

 AND MOD(f2.useedit,2) = 15

 AND f.recname = r.recname6

 AND f.pnlname = g.pnlname

 AND g.pnlgrpname = p.pnlgrpname7

 and t.table_name = DECODE(r.sqltablename,'

','PS_'||r.recname,r.sqltablename)

 and t.num_rows > 08

 ORDER BY t.num_rows DESC

Then, for each record that the above query identifies, the following statement is run.

DELETE

 FROM %Bind(TABLE_NAME,NOQUOTES)

 WHERE NOT (OPRID, %Bind(FIELDNAME,NOQUOTES)) IN (

 SELECT DISTINCT OPRID

 , RUNCNTLID

 FROM PSPRCSRQST

 WHERE runstatus != '2')

 AND ROWNUM <= 200000

Application Engine dynamically expands the statement for each table, in the case of

TL_RUN_CNTL_GRP it becomes

DELETE

 FROM PS_TL_RUN_CNTL_GRP

 WHERE NOT (OPRID, RUN_CNTL_GRP) IN (

 SELECT DISTINCT OPRID

 , RUNCNTLID

 FROM PSPRCSRQST

 WHERE runstatus != '2')

 AND ROWNUM <= 200000

Note, there are two Oracle specific constructions in use that must be changed if this process is

going to work on other platforms.

• ROWNUM is used to restrict the number of rows that can be deleted in one

execution. I arbitarily chose a value of 200,000 rows, to restrict the amount of data

copied into the rollback segment.

4 The second field should be either RUNCNTLID or RUN_CNTL_ID

5 The second field should be a part of the unique key

6 The record should appear on a page

7 The component (in which the page exists) should be a process security component

8 The table contain rows as determined when the cost-based optimizer statistics were

refreshed. NB: This is Oracle specific.

2 6 A U G U S T 2 0 1 0 T E C H N I C A L N O T E - R U N C O N T R O L P U R G E . D O C

G O - F A S T E R C O N S U L T A N C Y L T D . - C O N F I D E N T I A L P E O P L E S O F T R U N C O N T R O L P U R G E U T I L I T Y 5

• I have used a multi-column IN-list to avoid using WHERE NOT EXISTS.

The purge process reports to the message log on the number of rows in each run control table

before and after purge.

T E C H N I C A L N O T E - R U N C O N T R O L P U R G E . D O C 2 6 A U G U S T 2 0 1 0

P E O P L E S O F T R U N C O N T R O L P U R G E U T I L I T Y 6 G O - F A S T E R C O N S U L T A N C Y L T D . - C O N F I D E N T I A L

Implementation Considerations

This purge process is designed to run in and maintain a relatively steady volume of data. It

only deletes data, so space freed up by the deleted rows will remain within the table and index

segments and will not be released back to the database.

I recommend that before this Application Engine is implemented, the largest Run Control

tables are purged by being rebuilt with only the data to be retained. Otherwise, the purge

process will run for extended periods.

I have done this for each record by using Application Designer to generate an alter script

(even if there are no changes), and then adding a criteria to the INSERT … SELECT …

statement. I also refresh the statistics on the object. Here is an (edited) example

-- Start the Transaction

-- Create temporary table

CREATE TABLE PSYTL_RUN_CTRL_GRP

…

/

-- Copy from source to temp table

INSERT INTO PSYTL_RUN_CTRL_GRP (

 OPRID, RUN_CNTL_ID, EMPLID, EMPL_RCD, GROUP_ID,

INCLUD_EXCLUDE_IND)

 SELECT

 OPRID, RUN_CNTL_ID, EMPLID, EMPL_RCD, GROUP_ID,

INCLUD_EXCLUDE_IND

 FROM PS_TL_RUN_CTRL_GRP

 WHERE (OPRID, RUN_CNTL_ID) IN (SELECT DISTINCT OPRID, RUNCNTLID

FROM PSPRCSRQST)

/

-- CAUTION: Drop Original Table

DROP TABLE PS_TL_RUN_CTRL_GRP

/

-- Rename Table

RENAME PSYTL_RUN_CTRL_GRP TO PS_TL_RUN_CTRL_GRP

/

-- Done

CREATE UNIQUE iNDEX PS_TL_RUN_CTRL_GRP ON PS_TL_RUN_CTRL_GRP

(OPRID, RUN_CNTL_ID, EMPLID, EMPL_RCD,

 GROUP_ID)

…

/

ALTER INDEX PS_TL_RUN_CTRL_GRP NOPARALLEL LOGGING

/

begin

 sys.dbms_stats.gather_table_stats(ownname=>'SYSADM'

 ,tabname=>'PS_TL_RUN_CTRL_GRP'

 ,estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE

 ,cascade => TRUE

);

end;

/

